
Semantics Lambda Calculus Preview of Monday’s Lecture

Operational Semantics and the Lambda Calculus

Michael McThrow

San Jose State University
Computer Science Department

CS 152 – Programming Paradigms

September 8, 2021

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Operational Semantics and the Lambda Calculus

Semantics Lambda Calculus Preview of Monday’s Lecture

WARNING: This lecture is going to be more mathematical than
usual.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Operational Semantics and the Lambda Calculus

Semantics Lambda Calculus Preview of Monday’s Lecture

Table of Contents

1 Semantics

2 Lambda Calculus

3 Preview of Monday’s Lecture

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Operational Semantics and the Lambda Calculus

Semantics Lambda Calculus Preview of Monday’s Lecture

Table of Contents

1 Semantics

2 Lambda Calculus

3 Preview of Monday’s Lecture

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Operational Semantics and the Lambda Calculus

Semantics Lambda Calculus Preview of Monday’s Lecture

Syntax and Semantics

All programming languages have syntax and semantics.

Definition (Syntax)

“Syntax refers to the ways symbols may be combined to create
well-formed sentences (or programs) in the language” [Slonneger
and Kurtz, Formal Syntax and Semantics of Programming
Languages: A Laboratory Based Approach, 1995].

Definition (Semantics)

“Semantics reveals the meaning of syntactically valid strings in a
language” [Slonneger and Kurtz 1995].

This lecture will focus on semantics.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Operational Semantics and the Lambda Calculus

Semantics Lambda Calculus Preview of Monday’s Lecture

Syntax and Semantics

All programming languages have syntax and semantics.

Definition (Syntax)

“Syntax refers to the ways symbols may be combined to create
well-formed sentences (or programs) in the language” [Slonneger
and Kurtz, Formal Syntax and Semantics of Programming
Languages: A Laboratory Based Approach, 1995].

Definition (Semantics)

“Semantics reveals the meaning of syntactically valid strings in a
language” [Slonneger and Kurtz 1995].

This lecture will focus on semantics.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Operational Semantics and the Lambda Calculus

Semantics Lambda Calculus Preview of Monday’s Lecture

Syntax and Semantics

All programming languages have syntax and semantics.

Definition (Syntax)

“Syntax refers to the ways symbols may be combined to create
well-formed sentences (or programs) in the language” [Slonneger
and Kurtz, Formal Syntax and Semantics of Programming
Languages: A Laboratory Based Approach, 1995].

Definition (Semantics)

“Semantics reveals the meaning of syntactically valid strings in a
language” [Slonneger and Kurtz 1995].

This lecture will focus on semantics.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Operational Semantics and the Lambda Calculus

Semantics Lambda Calculus Preview of Monday’s Lecture

Syntax and Semantics

All programming languages have syntax and semantics.

Definition (Syntax)

“Syntax refers to the ways symbols may be combined to create
well-formed sentences (or programs) in the language” [Slonneger
and Kurtz, Formal Syntax and Semantics of Programming
Languages: A Laboratory Based Approach, 1995].

Definition (Semantics)

“Semantics reveals the meaning of syntactically valid strings in a
language” [Slonneger and Kurtz 1995].

This lecture will focus on semantics.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Operational Semantics and the Lambda Calculus

Semantics Lambda Calculus Preview of Monday’s Lecture

How do we define the semantics of a programming language?

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Operational Semantics and the Lambda Calculus

Semantics Lambda Calculus Preview of Monday’s Lecture

We could point users to the code that implements a reference
interpreter or compiler of that language. This is the approach that
many real-world programming languages take.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Operational Semantics and the Lambda Calculus

Semantics Lambda Calculus Preview of Monday’s Lecture

But there are problems with the “show me the code” approach to
semantics.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Operational Semantics and the Lambda Calculus

Semantics Lambda Calculus Preview of Monday’s Lecture

Problems with “Show Me the Code” Semantics

What if the code has errors?

What happens when someone decides to write a different
implementation of the language?

What happens when the language gets ported to a different
architecture or operating system?

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Operational Semantics and the Lambda Calculus

Semantics Lambda Calculus Preview of Monday’s Lecture

Another approach to defining the semantics of a language is
writing official documentation describing in human language the
details of the language.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Operational Semantics and the Lambda Calculus

Semantics Lambda Calculus Preview of Monday’s Lecture

This documentation can take the form of

Reports

Books (such as The C Programming Language by Brian
Kernighan and Dennis Ritchie)

Standards published by a standards agency such as ANSI

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Operational Semantics and the Lambda Calculus

Semantics Lambda Calculus Preview of Monday’s Lecture

Unfortunately, even with standards, there can still be problems that
arise with human-language descriptions of programming language
semantics.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Operational Semantics and the Lambda Calculus

Semantics Lambda Calculus Preview of Monday’s Lecture

An alternative to natural language-defined semantics is formal
semantics, which makes it possible to reason about the semantics
of a programming language in a logical, mathematical fashion.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Operational Semantics and the Lambda Calculus

Semantics Lambda Calculus Preview of Monday’s Lecture

Why Formal Semantics?

Provides a degree of precision that natural-language semantic
descriptions couldn’t provide.

Facilitates the ability to mathematically prove specific
properties of the language.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Operational Semantics and the Lambda Calculus

Semantics Lambda Calculus Preview of Monday’s Lecture

There are different systems of formal semantics, but in this course
we will be focusing on operational semantics.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Operational Semantics and the Lambda Calculus

Semantics Lambda Calculus Preview of Monday’s Lecture

Operational Semantics

Definition (Operational Semantics)

“[S]pecifies the behavior of a programming language by defining a
simple abstract machine for it” [Pierce, Types and Programming
Languages, 2002].

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Operational Semantics and the Lambda Calculus

Semantics Lambda Calculus Preview of Monday’s Lecture

Simple Arithmetic Expression Language: Syntax

<operator> ::= + | -

<digit> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

<digits> ::= <digit>

| <digit><digits>

<integer> ::= <digits>

| -<digits>

<expr> ::= <integer>

| <expr> <operator> <expr>

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Operational Semantics and the Lambda Calculus

Semantics Lambda Calculus Preview of Monday’s Lecture

Small-Step Semantics

Small-step semantics “shows how individual steps of
computation are used to rewrite a term, bit by bit, until it
eventually becomes a value” [Pierce 2002, p. 42].

We go step-by-step starting from non-terminal symbols and
eventually working our way down to the point where we have
nothing but terminal symbols.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Operational Semantics and the Lambda Calculus

Semantics Lambda Calculus Preview of Monday’s Lecture

Small-Step Semantics

In small-step semantics, we define a collection of evaluation
relations.

Each evaluation relation has the form t → t ′, which means “t
evaluates to t ′” [Pierce 2002, p. 34-35].

If an evaluation relation has the following form

t → t ′

u → u′

then it means “if t evaluates to t ′, then u evaluates to u′.”

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Operational Semantics and the Lambda Calculus

Semantics Lambda Calculus Preview of Monday’s Lecture

Small-Step Semantics of Simple Arithmetic Expression
Language

Let n be an integer, e be an expression, and op be either the + or
− operators.

1 n1 + n2 → n3 (where n3 = n1 + n2)

2 n1 − n2 → n3 (where n3 = n1 − n2)

3

e1 → e ′1
e1 op e2 → e ′1 op e2

4

e2 → e ′2
e1 op e2 → e1 op e ′2

Note that we are treating integers as terminal symbols in our
semantics despite the fact that the <integer> rule is non-terminal
in our grammar. This is to simplify matters.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Operational Semantics and the Lambda Calculus

Semantics Lambda Calculus Preview of Monday’s Lecture

Example of Small-Step Semantics on an Expression

Let’s use small-step semantics to evaluate the expression
2 + 3− 4→ 1.

2 +−1→ 1
3− 4→ −1

2 + 3− 4→ 1

When drawing the above derivation, we start from the bottom with
the original expression, and then we derive each subexpression,
going upward until we have no more subexpressions to derive.
NOTE: You will not be required to perform your own small-step
derivations on the midterm or final exams in this class.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Operational Semantics and the Lambda Calculus

Semantics Lambda Calculus Preview of Monday’s Lecture

Big-Step Semantics

Recall that in small-step semantics we perform individual
derivation steps until we reach terminal symbols.

In big-step semantics, we go directly from non-terminal rules
to terminal values.

Each evaluation statement has the form t ⇓ v , where t is the
original term and v is the resulting value [Pierce 2002, p. 43].

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Operational Semantics and the Lambda Calculus

Semantics Lambda Calculus Preview of Monday’s Lecture

Big-Step Semantics of Simple Expression Language

1 n ⇓ n

2
e1 ⇓ n1 e2 ⇓ n2

e1 + e2 ⇓ n3

where n3 = n1 + n2

3
e1 ⇓ n1 e2 ⇓ n2

e1 − e2 ⇓ n3

where n3 = n1 − n2

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Operational Semantics and the Lambda Calculus

Semantics Lambda Calculus Preview of Monday’s Lecture

One nice characteristic of big-step semantics is that it is easy to
write interpreters given an abstract syntax tree and a semantic
definition of the language.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Operational Semantics and the Lambda Calculus

Semantics Lambda Calculus Preview of Monday’s Lecture

Are there languages defined using operational semantics?

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Operational Semantics and the Lambda Calculus

Semantics Lambda Calculus Preview of Monday’s Lecture

Scheme R6RS is defined via operational semantics; check out
Appendix A of The Revised6 Report on the Algorithmic Language
Scheme.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Operational Semantics and the Lambda Calculus

Semantics Lambda Calculus Preview of Monday’s Lecture

Summary

Semantics defines the meaning of sentences in a programming
language.

Formal semantics allow us to define programming languages
in a logical, mathematical fashion.

Operational semantics specifies the behavior of a programming
language by specifying an artificial machine for it.

Big-step operational semantics is ideal for programming
language implementers.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Operational Semantics and the Lambda Calculus

Semantics Lambda Calculus Preview of Monday’s Lecture

Table of Contents

1 Semantics

2 Lambda Calculus

3 Preview of Monday’s Lecture

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Operational Semantics and the Lambda Calculus

Semantics Lambda Calculus Preview of Monday’s Lecture

This is the very beginning of our transition from procedural
programming to functional programming, which will be our focus
for the next six weeks.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Operational Semantics and the Lambda Calculus

Semantics Lambda Calculus Preview of Monday’s Lecture

I like to think about the development of programming languages as
two schools of thought: one rooted in a hardware-oriented point of
view, and one rooted in a mathematical point of view.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Operational Semantics and the Lambda Calculus

Semantics Lambda Calculus Preview of Monday’s Lecture

Procedural programming was developed largely under pragmatic
concerns: how do we save ourselves from the tedium of performing
low-level programming tasks?

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Operational Semantics and the Lambda Calculus

Semantics Lambda Calculus Preview of Monday’s Lecture

Functional programming, however, approaches programming from
a different point of view: how do we express our programs as
mathematical functions, and how do we run them efficiently on
computer hardware?

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Operational Semantics and the Lambda Calculus

Semantics Lambda Calculus Preview of Monday’s Lecture

Von Neumann computer architectures can be thought of as the
reification of the Turing machine model of computation.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Operational Semantics and the Lambda Calculus

Semantics Lambda Calculus Preview of Monday’s Lecture

Functional programming languages can be thought of as the
reification of the lambda calculus.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Operational Semantics and the Lambda Calculus

Semantics Lambda Calculus Preview of Monday’s Lecture

Some Background

In the beginning of the 20th century there were a lot of
research efforts by mathematicians and logicians in the area of
metamathematics.

Hilbert’s program (by mathematician David Hilbert) was an
initiative to see if all of the theorems of mathematics can be
built upon a set of axioms that were proven to be consistent.

However, logician Kurt Gödel proved that it is impossible to
prove the consistency of axioms within the same logical
system; this result is known as Gödel’s Second Incompleteness
Theorem.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Operational Semantics and the Lambda Calculus

Semantics Lambda Calculus Preview of Monday’s Lecture

Some Background

Logician Alonzo Church formulated the lambda calculus as
part of his research on metamathematics.

The purpose of the lambda calculus is to develop a
mathematical model for expressing computation.

Theoretically, any computable function can be expressed as a
lambda calculus expression.

In addition, the Church-Turing Thesis is a hypothesis stating
that any function expressed by the lambda calculus is
computable by a Turing machine.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Operational Semantics and the Lambda Calculus

Semantics Lambda Calculus Preview of Monday’s Lecture

Lambda Calculus Syntax

<λexpr>::= <var>

|λ <var> . <λexpr>

|(<λexpr> <λexpr>)

(1)

The first rule represents a variable. The second represents an
abstraction, which is a function definition. The third represents an
application, which is a function call.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Operational Semantics and the Lambda Calculus

Semantics Lambda Calculus Preview of Monday’s Lecture

Abstraction

λ <var> . <λexpr> (2)

<var> is the function parameter and <λexpr> is the function
body. All functions in the lambda calculus only have one
parameter, and all functions are anonymous.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Operational Semantics and the Lambda Calculus

Semantics Lambda Calculus Preview of Monday’s Lecture

Application

(f x) (3)

Call the function f with argument x ; equivalent to f (x) in
standard mathematical notation. This type of notation is known as
prefix notation.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Operational Semantics and the Lambda Calculus

Semantics Lambda Calculus Preview of Monday’s Lecture

Examples of Lambda Calculus Expressions

x

λx .x

λx .λy .(λu.v λu.z)

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Operational Semantics and the Lambda Calculus

Semantics Lambda Calculus Preview of Monday’s Lecture

Variable Scoping in the Lambda Calculus

If a variable x occurs within the body t of an abstraction
λx .t, then x is bound, and λx is a binder whose scope is t.

If x is not bound by an enclosing abstraction on x , then it is
free.

If a term has no free variables, it is closed. A combinator is a
closed term.

Example: In the λ-expression (λy .x y), x is free and y is bound.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Operational Semantics and the Lambda Calculus

Semantics Lambda Calculus Preview of Monday’s Lecture

Evaluating Lambda Calculus Expressions

Here are some simple examples:

x ⇒ x

(λx .x y)⇒ y

λx .x ⇒ λx .x

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Operational Semantics and the Lambda Calculus

Semantics Lambda Calculus Preview of Monday’s Lecture

However, not all evaluations are straightforward applications.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Operational Semantics and the Lambda Calculus

Semantics Lambda Calculus Preview of Monday’s Lecture

Function applications often involve substitutions of terms.
However, we must make sure that no free variables become
mistakenly bound as a result of substitution, or else we cause the
problem of variable capture.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Operational Semantics and the Lambda Calculus

Semantics Lambda Calculus Preview of Monday’s Lecture

To avoid variable capture, we perform α-conversion, which is
renaming in such a way where the semantic meaning of a function
abstraction does not change. We accomplish this by using a new
variable name, one that does not occur in the body of the function
being α-converted.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Operational Semantics and the Lambda Calculus

Semantics Lambda Calculus Preview of Monday’s Lecture

Concluding Thoughts

There is a lot more that can be said about the lambda calculus; in
fact, it is possible to teach an entire semester-long class on the
lambda calculus and its applications to mathematics and computer
science. The lambda calculus is used sometimes by programming
language researchers as a means of defining semantics.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Operational Semantics and the Lambda Calculus

Semantics Lambda Calculus Preview of Monday’s Lecture

Table of Contents

1 Semantics

2 Lambda Calculus

3 Preview of Monday’s Lecture

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Operational Semantics and the Lambda Calculus

Semantics Lambda Calculus Preview of Monday’s Lecture

On Monday, we will begin our lessons on Scheme, a functional
programming language that is part of the Lisp family of
programming languages. Lisp can be thought of as a reification of
the lambda calculus, except it’s much easier to code in than the
lambda calculus. We will also cover the core tenets of functional
programming.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Operational Semantics and the Lambda Calculus

	Semantics
	Lambda Calculus
	Preview of Monday's Lecture

